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PREFACE

real progress and opens the door to what could be misin-
formed policies. For example, I have heard conservative pun-
dits say that volcanoes emit more carbon dioxide—the most 
significant greenhouse gas—than does petroleum combus-
tion. I have also heard a liberal environmentalist say that we 
have to stop using hairspray because it is causing holes in the 
ozone layer that will lead to global warming. Well, the claim 
about volcanoes emitting more carbon dioxide than petro-
leum combustion can be refuted by the basic tools you will 
learn to use in Chapter 4 of this book. We can easily show that 
volcanoes emit only 1/50th as much carbon dioxide as petro-
leum combustion. As for hairspray depleting the ozone layer 
and thereby leading to global warming, the chlorofluorocar-
bons that deplete ozone have been banned from hairspray 
since 1978, and ozone depletion has nothing to do with global 
warming anyway. People with special interests or axes to grind 
can conveniently distort the truth before an ill-informed pub-
lic, which is why we all need to be knowledgeable.

So this is why I think you should take this course. Not 
just to satisfy the requirement for your major, and not just 
to get a good job some day, but to help you to lead a fuller 
life and to make the world a little better for everyone. I wish 
you the best as you embark on the journey to understand 
the world around you at the molecular level. The rewards 
are well worth the effort.

To the Professor
First and foremost, thanks to all of you who adopted this 
book in its previous editions. You helped to make this book 
one of the most popular general chemistry textbooks in the 
world. I am grateful beyond words. Second, I have listened 
carefully to your feedback on the previous edition. The 
changes you see in this edition are the direct result of your 
input, as well as my own experience using the book in my 
general chemistry courses. If you have reviewed content or 
have contacted me directly, you will likely see your sugges-
tions reflected in the changes I have made. Thank you.

Some of the most exciting changes in this edition are in 
the media associated with the book. I have added approxi-
mately 57 new Key Concept Videos and 61 new Interactive 
Worked examples to the media package. You can see a more de-
tailed description of these videos in the following section enti-
tled What’s New in This Edition. This means that you now have 
a library of over 150 interactive videos to enhance your course. 
In my courses, I use these videos to implement a before, during, 
after strategy for my students. My goal is simple: Engage students 
in active learning before class, during class, and after class. To that 
end, I assign a key concept video before each class session.  

To the Student
As you begin this course, I invite you to think about your 
reasons for enrolling in it. Why are you taking general 
chemistry? More generally, why are you pursuing a college 
education? If you are like most college students taking general 
chemistry, part of your answer is probably that this course is 
required for your major and that you are pursuing a college 
education so you can get a good job some day. Although these 
are good reasons, I would like to suggest a better one. I think 
the primary reason for your education is to prepare you to live 
a good life. You should understand chemistry—not for what it 
can get you—but for what it can do to you. Understanding 
chemistry, I believe, is an important source of happiness and 
fulfillment. Let me explain.

Understanding chemistry helps you to live life to its full-
est for two basic reasons. The first is intrinsic: through an un-
derstanding of chemistry, you gain a powerful appreciation 
for just how rich and extraordinary the world really is. The 
second reason is extrinsic: understanding chemistry makes 
you a more informed citizen—it allows you to engage with 
many of the issues of our day. In other words, understanding 
chemistry makes you a deeper and richer person and makes 
your country and the world a better place to live. These rea-
sons have been the foundation of education from the very 
beginnings of civilization.

How does chemistry help prepare you for a rich life and 
conscientious citizenship? Let me explain with two exam-
ples. My first one comes from the very first page of Chapter 1 
of this book. There, I ask the following question: What is the 
most important idea in all of scientific knowledge? My an-
swer to that question is this: the behavior of matter is de-
termined by the properties of molecules and atoms. 
That simple statement is the reason I love chemistry. We hu-
mans have been able to study the substances that compose 
the world around us and explain their behavior by reference 
to particles so small that they can hardly be imagined. If you 
have never realized the remarkable sensitivity of the world we 
can see to the world we cannot, you have missed out on a fun-
damental truth about our universe. To have never encoun-
tered this truth is like never having read a play by Shakespeare 
or seen a sculpture by Michelangelo—or, for that matter, like 
never having discovered that the world is round. It robs you 
of an amazing and unforgettable experience of the world and 
the human ability to understand it.

My second example demonstrates how science literacy 
helps you to be a better citizen. Although I am largely sympa-
thetic to the environmental movement, a lack of science lit-
eracy within some sectors of that movement and the resulting 
anti-environmental backlash create confusion that impedes 
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In the two-column format, the left column shows the stu-
dent how to analyze the problem and devise a solution strat-
egy. It also lists the steps of the solution, explaining the 
rationale for each one, while the right column shows the 
implementation of each step. In the three-column format, 
the left column outlines the general procedure for solving 
an important category of problems that is then applied to 
two side-by-side examples. This strategy allows students to 
see both the general pattern and the slightly different ways 
in which the procedure may be applied in differing contexts. 
The aim is to help students understand both the concept of 
the problem (through the formulation of an explicit concep-
tual plan for each problem) and the solution to the problem.

Third, Chemistry: A Molecular Approach is a visual book. 
Wherever possible, I use images to deepen the student’s in-
sight into chemistry. In developing chemical principles, mul-
tipart images help show the connection between everyday 
processes visible to the unaided eye and what atoms and mol-
ecules are actually doing. Many of these images have three 
parts: macroscopic, molecular, and symbolic. This combina-
tion helps students to see the relationships between the for-
mulas they write down on paper (symbolic), the world they 
see around them (macroscopic), and the atoms and molecules 
that compose that world (molecular). In addition, most fig-
ures are designed to teach rather than just to illustrate. They 
are rich with annotations and labels intended to help the stu-
dent grasp the most important processes and the principles 
that underlie them. The resulting images are rich with infor-
mation but also uncommonly clear and quickly understood.

Fourth, Chemistry: A Molecular Approach is a “big picture” 
book. At the beginning of each chapter, a short paragraph 
helps students to see the key relationships between the dif-
ferent topics they are learning. Through a focused and con-
cise narrative, I strive to make the basic ideas of every chapter 
clear to the student. Interim summaries are provided at se-
lected spots in the narrative, making it easier to grasp (and 
review) the main points of important discussions. And 
to make sure that students never lose sight of the forest for 
the  trees, each chapter includes several Conceptual Connec-
tions,  which ask them to think about concepts and solve 
problems without doing any math. I want students to learn 
the concepts, not just plug numbers into equations to churn 
out the right answer. This philosophy is also integral to the 
Key Concept Videos, which concisely reinforce student appre-
ciation of the core concepts in each chapter.

Chemistry: A Molecular Approach is lastly a book that de-
livers the depth of coverage faculty want. We do not have to 
cut corners and water down the material in order to get our 
students interested. We have to meet them where they are, 
challenge them to the highest level of achievement, and sup-
port them with enough pedagogy to allow them to succeed.

I hope that this book supports you in your vocation of 
teaching students chemistry. I am increasingly convinced of 
the importance of our task. Please feel free to email me with 
any questions or comments about the book.

Nivaldo J. Tro
tro@westmont.edu

The video introduces students to a key concept for that day and 
gets them thinking about it before they come to class. During 
class, I expand on the concept and use Leaning Catalytics to 
question my students. Instead of passively listening to a lec-
ture, they are interacting with the concepts through questions 
that I pose. Some of these questions are answered individually; 
other times I have them pair up with a partner. This approach 
has changed my classroom. Students engage in the material in 
new ways. They have to think and process and interact. It is 
deeply satisfying for me to see my students so engaged. Finally, 
after class, I give them another assignment, often an interactive 
worked example with a follow-up question. At this point, they 
have to apply what they have learned to solve a problem.

The results have been fantastic. My students are enjoying 
the process because they are engaged before, during, and after 
class rather than only looking at material the night before a 
problem set is due. I have seen evidence of their improved 
learning through increases in their scores on the American 
Chemical Society Standard General Chemistry Exam, which I 
always administer as the final exam for my course.

Although we have added exciting new media elements 
and made other changes to the book, the book’s goal re-
mains the same: to present a rigorous and accessible treatment 
of general chemistry in the context of relevance. Teaching gen-
eral chemistry would be much easier if all of our students 
had exactly the same level of preparation and ability. But 
alas, that is not the case. Even though I teach at a relatively 
selective institution, my courses are populated with stu-
dents with a range of backgrounds and abilities in chemis-
try. The challenge of successful teaching, in my opinion, is 
figuring out how to instruct and challenge the best students 
while not losing those with lesser backgrounds and abili-
ties. My strategy has always been to set the bar relatively 
high, while at the same time providing the motivation and 
support necessary to reach the high bar. That is exactly the 
philosophy of this book. We do not have to compromise 
away rigor in order to make chemistry accessible to our stu-
dents. In this book, I have worked hard to combine rigor 
with accessibility—to create a book that does not dilute the 
content, yet can be used and understood by any student 
willing to put in the necessary effort.

Chemistry: A Molecular Approach is first and foremost a 
student-oriented book. My main goal is to motivate students 
and get them to achieve at the highest possible level. As we all 
know, many students take general chemistry because it is a 
requirement; they do not see the connection between chem-
istry and their lives or their intended careers. Chemistry: A 
Molecular Approach strives to make those connections consis-
tently and effectively. Unlike other books, which often teach 
chemistry as something that happens only in the laboratory 
or in industry, this book teaches chemistry in the context of 
relevance. It shows students why chemistry is important to 
them, to their future careers, and to their world.

Second, Chemistry: A Molecular Approach is a pedagogi-
cally driven book. In seeking to develop problem-solving 
skills, a consistent approach (Sort, Strategize, Solve, and 
Check) is applied, usually in a two- or three-column format. 
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questions throughout the book.

reflect the most recent measurements available. These 
updates include Figure 4.2 Carbon Dioxide in the Atmo-
sphere; Figure 4.3 Global Temperatures; Figure 4.25 U.S.  
Energy Consumption; the unnumbered figure in Section 
6.10 of U.S. Energy Consumption; Figure 6.12 Energy Con-
sumption by Source; Table 6.6 Changes in National Average 
Pollutant Levels, 1980–2013; Table 14.4 Change in Pollutant 
Levels; Figure 14.19 Ozone Depletion in the Antarctic Spring; 
Figure 16.15 Sources of U.S. Energy; Figure 16.16 Acid Rain; 
and Figure 16.18 U.S. Sulfur Dioxide Pollutant Levels.

Writing Equations for Acid–Base Reactions 
Involving a Strong Acid and Example 14.2 Determining the 
Order and Rate Constant of a Reaction have been expanded.

-
ple 4.14 Writing Equations for Acid–Base Reactions Involving 
a Weak Acid; Example 18.2 Calculating ΔS for a Change of 
State; Example 12.2 Calculating the Packing Efciency of a 
Unit Cell; and Example 12.3 Relating Unit Cell Volume, Edge 
Length, and Atomic Radius.

-
sponding art, including Sections 1.1, 2.1, 5.1, 16.1, and 
17.1, have been replaced or modified.

Thermoluminescent Dosimeters,  
including new Figure 20.7, has been added.

of sublimation have been added to Section 11.6.

Entropy Changes 
 Associated with State Changes has been added. This  section 
also includes expanded coverage on reversible and irre-
versible processes.

Radioactivity and Nuclear 
Chemistry have been modified, including Sections 20.3 
and 20.5 and Tables 20.1 and 20.4.

to over 40 new problems that have been added to new 
Chapter 12) have been added or modified.
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What’s New in This Edition?
The book has been extensively revised and contains more 
small changes than can be detailed here. The most significant 
changes to the book and its supplements are listed below:

Solids and Modern Materials. This 
chapter contains new topics and consolidates content 
on materials that was found in other parts of the book 
in previous editions into one new chapter. All chapters 
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(University of Oregon), Kristin Ziebert (Oregon State Uni-
versity), and Michael Everest (Westmont College), I have 
added two new categories of end-of-chapter questions 
designed to help students build what we call “twenty-
first-century skills.” The first new category of questions is 
Data Interpretation and Analysis. These questions present 
real data in real-life situations and ask students to analyze 
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of questions is Questions for Group Work. Our group work 
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their peers in small groups. The questions can be used in 
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and 61 new Interactive Worked Examples to the media 
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ous edition had 40 Interactive worked examples, there 
is now a total of 158 interactive videos.) These tools are 
designed to help professors engage their students in ac-
tive learning. Recent research has conclusively demon-
strated that students learn better when they are active in 
the learning process, as opposed to passively listening 
and simply taking in content. The Key Concept Videos 
are brief (two to five minutes), and each introduces a key 
concept from a chapter. The student does not just pas-
sively listen to the video; the video stops in the middle 
and poses a question to the student. The student must 
answer the question before the video continues. Each 
video also includes a follow-up question that is assign-
able in MasteringChemistryTM. The Interactive Worked 
Examples are similar in concept, but instead of explain-
ing a key concept, they walk the student through one 
of the in-chapter worked examples from the book. Like 
the Key Concept Videos, Interactive Worked Examples 
stop in the middle and force the student to interact 
by completing a step in the example. The examples 
also have a follow-up question that is assignable in 
 MasteringChemistryTM. The power of interactivity to 
make connections in problem solving is immense. I did 
not quite realize this power until we started creating the 
Interactive Worked Examples and I saw how I could use 
the animations to make connections that are just not 
possible on the static page.
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▲ This image portrays the 

Disneyland ride, Adventure Thru 

Inner Space. The premise of the 

ride is that you enter a microscope 

and get shrunk down to the size of 

an atom. The red and white 

spheres shown here depict oxygen 

and hydrogen atoms bound 

together to form water molecules.

W
hat do you think is the most important idea in all of human knowledge? 
There are, of course, many possible answers to this question—some practical, 
some philosophical, and some scientific. If we limit ourselves only to scien-

tific answers, mine would be this: the properties of matter are determined by 
the properties of atoms and molecules. Atoms and molecules determine how 
matter behaves—if they were different, matter would be different. The properties of 
water molecules determine how water behaves, the properties of sugar molecules deter-
mine how sugar behaves, and the properties of the molecules that compose our bodies 
determine how our bodies behave. The understanding of matter at the molecular level 
gives us unprecedented control over that matter. For example, our understanding of 
the details of the molecules that compose living organisms has revolutionized biology 
over the last 50 years.

1.1 Atoms and Molecules
As I sat in the “omnimover” and listened to the narrator’s voice telling me that I was 
shrinking down to the size of an atom, I grew apprehensive but curious. Just min-
utes before, while waiting in line, I witnessed what appeared to be full-sized humans 
entering a microscope and emerging from the other end many times smaller. I was 
seven years old, and I was about to ride Adventure Thru Inner Space, a Disneyland ride 

Atoms and Molecules
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(in Tomorrowland) that simulated the process of shrinking down to the size of an 
atom. The ride began with darkness and shaking, but then the shaking stopped and 
giant snowflakes appeared. The narrator explained that you were in the process of 
shrinking to an ever-smaller size (which explains why the snowflakes grew larger 
and larger). Soon, you entered the wall of the snowflake itself and began to see water 
molecules all around you. These also grew larger as you continued your journey into 
inner space and eventually ended up within the atom itself. Although this Disney-
land ride bordered on being corny, and although it has since been shut down, it was 
my favorite ride as a young child.

That ride sparked my interest in the world of atoms and molecules, an interest that 
has continued and grown to this day. I am a chemist because I am obsessed with the con-
nection between the “stuff” around us and the atoms and molecules that compose that 
stuff. More specifically, I love the idea that we humans have been able to figure out the 
connection between the properties of the stuff around us and the properties of atoms and 
molecules. Atoms are sub-microscopic particles that are the fundamental building 
blocks of ordinary matter. Free atoms are rare in nature; instead they bind together in 
specific geometrical arrangements to form molecules. A good example of a molecule is 
the water molecule, which I remember so well from the Disneyland ride.

A water molecule is composed of one oxygen atom bound to two hydrogen atoms in 
the shape shown at left. The exact properties of the water molecule—the atoms that 
compose it, the distances between those atoms, and the geometry of how the atoms are 
bound together—determine the properties of water. If the molecule were different, water 
would be different. For example, if water contained two oxygen atoms instead of just 
one, it would be a molecule like this:

Hydrogen peroxide molecule

Hydrogen
atoms

Oxygen
atoms

This molecule is hydrogen peroxide, which you may have encountered if you have 
ever bleached your hair. A hydrogen peroxide molecule is composed of two oxygen 
atoms and two hydrogen atoms. This seemingly small molecular difference results in a 
huge difference in the properties of water and hydrogen peroxide. Water is the familiar 
and stable liquid we all drink and bathe in. Hydrogen peroxide, in contrast, is an unsta-
ble liquid that, in its pure form, burns the skin on contact and is used in rocket fuel. 
When you pour water onto your hair, your hair simply becomes wet. However, if you put 
diluted hydrogen peroxide on your hair, a chemical reaction occurs that strips your hair 
of its color.

The details of how specific atoms bond to form a molecule—in a straight line, at a 
particular angle, in a ring, or in some other pattern—as well as the type of atoms in the 
molecule, determine everything about the substance that the molecule composes. If 
we want to understand the substances around us, we must understand the atoms and 
molecules that compose them—this is the central goal of chemistry. A good simple 
definition of chemistry is

Chemistry—the science that seeks to understand the behavior of 
matter by studying the behavior of atoms and molecules.

Throughout this book, we explore the connection between atoms and molecules and 
the matter they compose. We seek to understand how differences on the atomic or 
molecular level affect the properties on the macroscopic level. Before we move on, let’s 
examine one more example that demonstrates this principle. Consider the structures of 
graphite and diamond shown on the next page.

Hydrogen
atoms

Oxygen
atom

Water molecule

The hydrogen peroxide we use as 
an antiseptic or bleaching agent is 
considerably diluted.

The term atoms in this defnition 
can be interpreted loosely to include 
atoms that have lost or gained 
electrons.
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Graphite structure Diamond structureGraphite is the slippery black substance 
(often called pencil lead) that you have probably 
used in a mechanical pencil. Diamond is the 
brilliant gemstone found in jewelry. Graphite 
and diamond are both composed of exactly the 
same atoms—carbon atoms. The striking differ-
ences between the substances are a result of how 
those atoms are arranged. In graphite, the atoms 
are arranged in sheets. The atoms within each 
sheet are tightly bound to each other, but the 
sheets are not tightly bound to other sheets. 
Therefore the sheets can slide past each other, 
which is why the graphite in a pencil leaves a 
trail as you write. In diamond, by contrast, the 
carbon atoms are all bound together in a three-
dimensional structure where layers are strongly 
bound to other layers, resulting in the strong, 
nearly unbreakable substance. This example 
illustrates how even the same atoms can com-

Although some Greek philosophers, 
such as Aristotle, did use observation 
to attain knowledge, they did 
not emphasize experiment and 
measurement to the extent that 
modern science does.

1.2 The Scientific Approach to Knowledge
Throughout history, humans have approached knowledge about the physical world in 
different ways. For example, the Greek philosopher Plato (427–347 b.c.e.) thought that 
the best way to learn about reality was not through the senses but through reason. He 
believed that the physical world was an imperfect representation of a perfect and tran-
scendent world (a world beyond space and time). For him, true knowledge came not 
through observing the real physical world, but through reasoning and thinking about 
the ideal one.

The scientific approach to knowledge, however, is exactly the opposite of Plato’s. 
Scientific knowledge is empirical—it is based on observation and experiment. Scientists 
observe and perform experiments on the physical world to learn about it. Some obser-
vations and experiments are qualitative (noting or describing how a process happens), 
but many are quantitative (measuring or quantifying something about the process). For 
example, Antoine Lavoisier (1743–1794), a French chemist who studied combustion 
(burning), made careful measurements of the mass of objects before and after burning 
them in closed containers. He noticed that there was no change in the total mass of 
material within the container during combustion. In doing so, Lavoisier made an 
important observation about the physical world.

Observations often lead scientists to formulate a hypothesis, a tentative interpreta-
tion or explanation of the observations. For example, Lavoisier explained his observations 
on combustion by hypothesizing that when a substance burns, it combines with a com-
ponent of air. A good hypothesis is falsifiable, which means that it makes predictions that 
can be confirmed or refuted by further observations. Scientists test hypotheses by experi-
ments, highly controlled procedures designed to generate observations that confirm or 
refute a hypothesis. The results of an experiment may support a hypothesis or prove it 
wrong—in which case the scientist must modify or discard the hypothesis.

In some cases, a series of similar observations leads to the development of a scien-
tific law, a brief statement that summarizes past observations and predicts future ones. 
Lavoisier summarized his observations on combustion with the law of conservation 
of mass, which states, “In a chemical reaction, matter is neither created nor destroyed.” 
This statement summarized his observations on chemical reactions and predicted the 

▲ French chemist Antoine Lavoisier 
with his wife, Marie, who helped 
him in his work by illustrating 
his experiments and translating 
scientifc articles from English. 
Lavoisier, who also made signifcant 
contributions to agriculture, 
industry, education, and government 
administration, was executed during 
the French Revolution.  
(The Metropolitan Museum of Art)

pose vastly different substances when they are bound together in different patterns. 
Such is the atomic and molecular world—small differences in atoms and molecules can 
result in large differences in the substances that they compose.
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outcome of future observations on reactions. Laws, like hypotheses, are also subject to 
experiments, which can support them or prove them wrong.

Scientific laws are not laws in the same sense as civil or governmental laws. Nature 
does not follow laws in the way that we obey the laws against speeding or running a stop 
sign. Rather, scientific laws describe how nature behaves—they are generalizations about 
what nature does. For that reason, some people find it more appropriate to refer to them 
as principles rather than laws.

One or more well-established hypotheses may form the basis for a scientific theory. 
A scientific theory is a model for the way nature is and tries to explain not merely what 
nature does but why. As such, well-established theories are the pinnacle of scientific 
knowledge, often predicting behavior far beyond the observations or laws from which 
they were developed. A good example of a theory is the atomic theory proposed by 
English chemist John Dalton (1766–1844). Dalton explained the law of conservation of 
mass, as well as other laws and observations of the time, by proposing that matter is com-
posed of small, indestructible particles called atoms. Since these particles are merely rear-
ranged in chemical changes (and not created or destroyed), the total amount of mass 
remains the same. Dalton’s theory is a model for the physical world—it gives us insight 
into how nature works and, therefore, explains our laws and observations.

Finally, the scientific approach returns to observation to test theories. For example, 
scientists can test the atomic theory by trying to isolate single atoms or by trying to 
image them (both of which, by the way, have already been accomplished). Theories are 
validated by experiments; however, theories can never be conclusively proven because 
some new observation or experiment always has the potential to reveal a flaw. Notice 
that the scientific approach to knowledge begins with observation and ends with obser-
vation. An experiment is in essence a highly controlled procedure for generating critical 
observations designed to test a theory or hypothesis. Each new set of observations has 
the potential to refine the original model. Figure 1.1▼ summarizes one way to map the 
scientific approach to knowledge. Scientific laws, hypotheses, and theories are all sub-
ject to continued experimentation. If a law, hypothesis, or theory is proved wrong by an 
experiment, it must be revised and tested with new experiments. Over time, the scien-
tific community eliminates or corrects poor theories and laws, and valid theories and 
laws—those consistent with experimental results—remain.

Established theories with strong experimental support are the most powerful 
pieces of scientific knowledge. You may have heard the phrase “That is just a theory,” as 
if theories are easily dismissible. Such a statement reveals a deep misunderstanding of 
the nature of a scientific theory. Well-established theories are as close to truth as we get 
in science. The idea that all matter is made of atoms is “just a theory,” but it has over 
200 years of experimental evidence to support it. It is a powerful piece of scientific 
knowledge on which many other scientific ideas are based.

One last word about the scientific approach to knowledge: some people wrongly 
imagine science to be a strict set of rules and procedures that automatically leads to 
inarguable, objective facts. This is not the case. Even our diagram of the scientific 
approach to knowledge is only an idealization of real science, useful to help us see the 

In Dalton’s time, people thought 
atoms were indestructible. Today, 
because of nuclear reactions, we 
know that atoms can be broken apart 
into their smaller components.

Test

Confirm

(or revise law)
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(or revise hypothesis)
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Theory
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The Scientific Approach

▼ FIGURE 1.1 The Scientifc 

Approach to Knowledge 
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key distinctions of science. Real science requires hard work, care, creativity, and even 
a bit of luck. Scientific theories do not just arise out of data—men and women of 
genius and creativity craft theories. A great theory is not unlike a master painting, 
and many see a similar kind of beauty in both. (For more on this aspect of science, see 
the box below entitled Thomas S. Kuhn and Scientific Revolutions.)

CONCEPTUAL 
CONNECTION 1.1 

Laws and Theories Which statement best explains the diference between a law 
and a theory?

(a) A law is truth; a theory is mere speculation.
(b) A law summarizes a series of related observations; a theory gives the underlying 

reasons for them.
(c) A theory describes what nature does; a law describes why nature does it.

1.3 The Classification of Matter
Matter is anything that occupies space and has mass. Your desk, your chair, and even 
your body are all composed of matter. Less obviously, the air around you is also matter—it 
too occupies space and has mass. We call a specific instance of matter—such as air, water, 
or sand—a substance. We classify matter according to its state (its physical form) and 
its composition (the basic components that make it up).

The Nature OF Science 
Thomas S. Kuhn and Scientific Revolutions

W
hen scientists talk about science, they often talk in 
ways that imply that theories are “true.” Further, they 

talk as if they arrive at theories in logical and unbiased ways. 
For example, a theory central to chemistry that we have 
discussed in this chapter is John Dalton’s atomic theory—
the idea that all matter is composed of atoms. Is this theory 
“true”? Was it reached in logical, unbiased ways? Will this 
theory still be around in 200 years?

The answers to these questions depend on how we view 
science and its development. One way to view science—let’s 
call it the traditional view—is as the continual accumulation 
of knowledge and the building of increasingly precise 
theories. In this view, a scientific theory is a model of the 
world that reflects what is actually in nature. New 
observations and experiments result in gradual adjustments 
to theories. Over time, theories get better, giving us a more 
accurate picture of the physical world.

In the twentieth century, a different view of scientific 
knowledge began to develop. A book by Thomas Kuhn  
(1922–1996), published in 1962 and entitled The Structure 

of Scientific Revolutions, challenged the traditional view. 
Kuhn’s ideas came from his study of the history of science, 
which, he argued, does not support the idea that science 
progresses in a smooth cumulative way. According to Kuhn, 
science goes through fairly quiet periods that he called 
normal science. In these periods, scientists make their data 
fit the reigning theory, or paradigm. Small inconsistencies are 
swept aside during periods of normal science. However, when 
too many inconsistencies and anomalies develop, a crisis 

emerges. The crisis brings about a revolution and a new 
reigning theory. According to Kuhn, the new theory is usually 
quite different from the old one; it not only helps us to make 
sense of new or anomalous information, but it also enables 
us to see accumulated data from the past in a dramatically 
new way.

Kuhn further contended that theories are held for 
reasons that are not always logical or unbiased, and that 
theories are not true models—in the sense of a one-to-one 
mapping—of the physical world. Because new theories are 
often so different from the ones they replace, he argued, and 
because old theories always make good sense to those 
holding them, they must not be “True” with a capital T; 
otherwise “truth” would be constantly changing.

Kuhn’s ideas created a controversy among scientists and 
science historians that continues to this day. Some, especially 
postmodern philosophers of science, have taken Kuhn’s ideas 
one step further. They argue that scientific knowledge is 
completely biased and lacks any objectivity. Most scientists, 
including Kuhn, would disagree. Although Kuhn pointed out 
that scientific knowledge has arbitrary elements, he also said, 
“Observation . . . can and must drastically restrict the range of 

admissible scientific belief, else there would be no science.” In 
other words, saying that science contains arbitrary elements is 
quite different from saying that science itself is arbitrary.

Q U E S T I O N
In his book, Kuhn stated, “A new theory . . . is seldom or 
never just an increment to what is already known.” From your 

knowledge of the history of science, can you think of any 

examples that support Kuhn’s statement? Do you know of any 

instances in which a new theory or model was drastically 

different from the one it replaced?

Classifying Matter
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Diamond
C (s, diamond)

Crystalline Solid:
Regular

three-dimensional pattern

Glass and other amorphous solids 
can be thought of, from one point of 
view, as intermediate between solids 
and liquids. Their atoms are fxed in 
position at room temperature, but 
they have no long-range structure and 
do not have distinct melting points.

Solid matter Gaseous matterLiquid matter

▲ In a solid, the atoms or molecules are fxed in place and can only vibrate. In a liquid, 
although the atoms or molecules are closely packed, they can move past one another, allowing 
the liquid to fow and assume the shape of its container. In a gas, the atoms or molecules are 
widely spaced, making gases compressible as well as fuid (able to fow).

The state of matter changes from 
solid to liquid to gas with increasing 
temperature.

The States of Matter: Solid, Liquid, and Gas
Matter exists in three different states: solid, liquid, and gas. In solid matter, atoms 
or molecules pack closely to each other in fixed locations. Although the atoms and 
molecules in a solid vibrate, they do not move around or past each other. Conse-
quently, a solid has a fixed volume and rigid shape. Ice, aluminum, and diamond 
are examples of solids. Solid matter may be crystalline, in which case its atoms or 
molecules are in patterns with long-range, repeating order (Figure 1.2◀), or it may be 
amorphous, in which case its atoms or molecules do not have any long-range order. 
Table salt and diamond are examples of crystalline solids; the well-ordered geometric 
shapes of salt and diamond crystals reflect the well-ordered geometric arrangement 
of their atoms (although this is not the case for all crystalline solids). Examples of 
amorphous solids include glass and plastic. In liquid matter, atoms or molecules pack 
about as closely as they do in solid matter, but they are free to move relative to each 
other, giving liquids a fixed volume but not a fixed shape. Liquids assume the shape 
of their containers. Water, alcohol, and gasoline are all substances that are liquids at 
room temperature.

▲ FIGURE 1.2 Crystalline 

Solid Diamond (frst discussed 
in Section 1.1) is a crystalline 
solid composed of carbon atoms 
arranged in a regular, repeating 
pattern.

In gaseous matter, atoms or molecules have a lot of space between them and are free 
to move relative to one another, making gases compressible (Figure 1.3▶). When you 
squeeze a balloon or sit down on an air mattress, you force the atoms and molecules into 
a smaller space so that they are closer together. Gases always assume the shape and vol-
ume of their containers. Substances that are gases at room temperature include helium, 
nitrogen (the main component of air), and carbon dioxide.
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Solid–not compressible Gas–compressible

◀ FIGURE 1.3 The Compressibility 

of Gases Gases can be 
compressed—squeezed into a smaller 
volume—because there is so much 
empty space between atoms or 
molecules in the gaseous state.

Classifying Matter according to Its Composition: 
Elements, Compounds, and Mixtures
In addition to classifying matter according to its state, we classify it according to its com-
position, as shown in the following chart:

Variable composition?

Heterogeneous Homogeneous

MixturePure Substance

CompoundElement

Uniform throughout?Separable into simpler
substances?No

No

NoYes

Yes

Yes

Matter

Helium Pure water Wet sand Tea with sugar
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The first division in the classification of matter is between a pure substance and a mixture. 
A pure substance is made up of only one component, and its composition is invariant (it 
does not vary from one sample to another). The components of a pure substance can be indi-
vidual atoms or groups of atoms joined together. For example, helium, water, and table salt 
(sodium chloride) are all pure substances. Each of these substances is made up of only one 
component: helium is made up of helium atoms, water is made up of water molecules, and 
sodium chloride is made up of sodium chloride units. The composition of a pure sample of 
any one of these substances is always exactly the same (because you can’t vary the composi-
tion of a substance made up of only one component).

A mixture, by contrast, is composed of two or more components in proportions 
that can vary from one sample to another. For example, sweetened tea, composed pri-
marily of water molecules and sugar molecules (with a few other substances mixed in), is 
a mixture. We can make tea slightly sweet (a small proportion of sugar to water) or very 
sweet (a large proportion of sugar to water) or any level of sweetness in between.

We categorize pure substances themselves into two types—elements and compounds—
depending on whether or not they can be broken down (or decomposed) into simpler 
substances. Helium, which we just noted is a pure substance, is also a good example of an 
element, a substance that cannot be chemically broken down into simpler substances. 
Water, also a pure substance, is a good example of a compound, a substance composed 
of two or more elements (in this case hydrogen and oxygen) in a fixed, definite propor-
tion. On Earth, compounds are more common than pure elements because most ele-
ments combine with other elements to form compounds.

We also categorize mixtures into two types—heterogeneous and homogeneous—
depending on how uniformly the substances within them mix. Wet sand is a 
 heterogeneous mixture, one in which the composition varies from one region of 
the mixture to another. Sweetened tea is a homogeneous mixture, one with the 
same composition throughout. Homogeneous mixtures have uniform compositions 
because the atoms or molecules that compose them mix uniformly. Heterogeneous 
mixtures are made up of distinct regions because the atoms or molecules that compose 
them separate. Here again we see that the properties of matter are determined by the 
atoms or molecules that compose it.

Classifying a substance according to its composition is not always obvious and 
requires that we either know the true composition of the substance or are able to test it 
in a laboratory. For now, we focus on relatively common substances that you are likely to 
have encountered. Throughout this course, you will gain the knowledge to understand 
the composition of a larger variety of substances.

All known elements are listed in the 
periodic table in the inside front cover 
of this book.

CONC UAL EPTU
CONNECTIONN 1.2

Pure Substances and Mixtures Let a small circle represent an atom of one 
type of element and a small square represent an atom of a second type of element. Make 
a drawing of (a) a pure substance (a compound) composed of the two elements (in a 
one-to-one ratio), (b) a homogeneous mixture composed of the two elements, and (c) a 
heterogeneous mixture composed of the two elements.

Separating Mixtures
Chemists often want to separate a mixture into its components. Such separations can be 
easy or difficult, depending on the components in the mixture. In general, mixtures are 
separable because the different components have different physical or chemical proper-
ties. We can use various techniques that exploit these differences to achieve separation. 
For example, we can separate a mixture of sand and water by decanting—carefully 
pouring off—the water into another container. A homogeneous mixture of liquids can 
usually be separated by distillation, a process in which the mixture is heated to boil 
off the more volatile (easily vaporizable) liquid. The volatile liquid is then recondensed 
in a condenser and collected in a separate flask (Figure 1.4▶). If a mixture is composed 
of an insoluble solid and a liquid, we can separate the two by filtration, in which the 
mixture is poured through filter paper in a funnel (Figure 1.5▶).
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Stirring rod

Mixture of liquid
and solid

Filter paper
traps solid.

Liquid component
passes through
and is collected.

Funnel

Filtration

Condenser

Vapor collected
as pure liquid

Mixture of liquids
with different
boiling points

Most volatile component
boils first.

Distillation

Cooling
water out

Cooling
water in

▲ FIGURE 1.4 Separating Substances by Distillation When a liquid mixture is heated, the 
component with the lowest boiling point vaporizes frst, leaving behind less volatile liquids or 
dissolved solids. The vapor is then cooled, condensing it back to a liquid, and collected.

▲ FIGURE 1.5 Separating 

Substances by Filtration A solid and 
liquid mixture can be separated by 
pouring the mixture through a funnel 
containing flter paper designed to 
allow only the liquid to pass.

1.4 Physical and Chemical Changes and 
Physical and Chemical Properties

Every day we witness changes in matter: ice melts, iron rusts, gasoline burns, fruit ripens, 
and water evaporates. What happens to the molecules or atoms that compose these sub-
stances during such changes? The answer depends on the type of change. Changes that 
alter only state or appearance, but not com-
position, are physical changes. The atoms 
or molecules that compose a substance do not 
change their identity during a physical change. 
For example, when water boils, it changes its 
state from a liquid to a gas, but the gas remains 
composed of water molecules, so this is a physi-
cal change (Figure 1.6▶).

H2O(l)

Water molecules change from liquid
to gaseous state: physical change.

H2O(g)

▶ FIGURE 1.6 Boiling, a Physical 

Change When water boils, it turns into a gas but 
does not alter its chemical identity—the water 
molecules are the same in both the liquid and 
gaseous states. Boiling is a physical change, and 
the boiling point of water is a physical property.


